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In part I a reaction-diffusion equation was introduced for the description of electron transfer 
reactions which are induced by fluctuations in both the solvent polarization and in the 
intramolecular vibrational coordinates. We analyze the model employing a generalized 
moment expansion for the time behavior of the survival probability Q(t), i.e., for the fraction of 
molecules that have not transferred their electron at time t. Numerical and, in the narrow 
reaction window limit, analytical solutions are given for the average survival times 'T. When the 
contribution of the intramolecular coordinates is appreciable an approximate power-law 
behavior 'T a: r'l, with 0 < a < 1, is found for the dependence of'T on the solvent dielectric 
relaxation time 'TL , in the large 'TL regime. Within the framework of the generalized moment 
description Q(t) is approximated as a superposition of several optimized exponential functions. 
In the small and intermediate 'TL regimes it is found that a single- or bi-exponential description, 
respectively, is sufficient. Simple formulas for such approximations in terms of the average 
survival times are given. Furthermore it is demonstrated that in the large 'T L regime a truly 
multiexponential time behavior for the survival probability is encountered which, over a 
certain range of time, can appear to be algebraic, i.e., Q(t) a: t - r. The relation of these results 
to experimental data is discussed. 

I. INTRODUCTION 

The dynamical effects of solvent dielectric relaxation on 
the rates of electron transfer reactions have been the focus of 
a number of recent experimental l

-
9 and theoretical1

0-
19 in

vestigations. However, since the theoretical investigations 
on this topic were naturally centered on the description of 
the influence of the solvent, additional contributions to the 
electron transfer from intramolecular degrees of freedom 
were most often neglected. In part I of this series l8 the elec
tron transfer process was treated in a way which incorporat
ed the effects of fluctuations of both the solvent polarization 
and of any intramolecular vibrational changes during the 
reaction. The treatment led to a diffusion equation for the 
solvent polarization coordinate which included a reactive 
term also dependent on this coordinate. In the absence of 
intramolecular contributions this reactive term simplifies to 
a delta function. A first analysis of this solvational plus intra
molecular vibrational model, including an approximate de
scription of resulting reaction rates, was given in part I. 

In the present paper a numerical solution of the model of 
part I is given, making use of a multiple exponential expres
sion for the survival probability and evaluating the terms in 
it using the generalized moment algorithm. 20,21 To make the 
present paper relatively self-contained, the model is re
viewed in Sec. II and the method of solution is described 
there in detail. In Sec. III the numerical results for mean 
survival times are presented and comparison is made with 
several approximations. Numerical results for the time de
pendence of the survival probability, i.e., the fraction of mol
ecules that have not transferred their electron, are given in 
Sec. IV, and a comparison is made with single- and bi-expo-

a) Contribution No. 7495. 

nential approximations. Concluding remarks, discussion, 
and remarks on some experiments appear in Sec. V. 

II. MODEL AND METHOD OF SOLUTION 

A. Reactlon-diffuslon equation 

In solutions, stochastic degrees of freedom, such as a 
fluctuating solvent polarization coordinate X, as well as in
tramolecular vibrational degrees offreedom, may contribute 
to electron transfer processes. The first of these coordinates, 
it was argued in part I, can often be regarded as "slow," and 
the second as relatively "fast." In such a situation electron 
transfer reactions can be described by a reaction-diffusion 
equation. For the probability distribution P(X,t)dX, i.e., the 
fraction of molecules that have not transferred their electron 
at time t and which experience a solvent polarization coordi
nate in the interval (X,x + dX), this equation has the form 

!...P(X,t) = [L(X) - k(X) ]P(X,t) . (2.1) at 
L(X) is a Fokker-Planck operator that determines the sto
chastic motion along the polarization coordinate and has the 
form 

L(X) =D~ {~+{3 [-.!!...... U(X)]} (2.2) ax ax dX ' 

where D is the "diffusion coefficient" for the solvent fluctu
ations, and U(X) is a potential that, for the generic case 
considered in part I, is assumed to be harmonic 

U(X) = !X2; (2.3) 

{3 denotes the scaled inverse temperature, (k B n - I. The dif
fusive motion along the polarization coordinate alone, i.e., 
the fluctuations of the solvent polarization in the absence of 
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reaction, would lead to a relaxation of the distribution func
tion P(X,t) from an initial distribution P(X,t = 0) to an 
equilibrium Boltzmann distribution 

Po(X) ex: exp[ - P U(X)] , (2.4) 

on a time scale given by 

1'L = (PD)-l. (2.S) 

That the stationary distribution (2.4) is not reached is due to 
the reactive term k(X) in Eq. (2.1 ).It describes the electron 
transfer process, which is induced at each X by the solva
tional and vibrational motion. In deriving the reactive term 
the assumption was made that equilibration in the vibration
al coordinates is fast, that the motion across the transition 
state is ballistic rather than diffusive,22(a) and, for computa
tional simplicity, that no backreaction occurs (equations in
volving a back reaction are given later in this section). The 
reactive term has the form22

(b) 

k(X) = 'Vq exp[ - pAG(X)] , (2.6) 

with a frequency factor 'Vq which depends on whether the 
crossing of the transition state is adiabatic or nonadiabatic 
and is described in part I. The X-dependent free energy bar
rier !l.G(X) was derived in part I to be 

AG(X) = ~ (40) (X _ Xc)2 , (2.7) 
2 4i 

where 4i and 40 are quantities describing the contributions 
from intramolecular and environmental reorganization pro
cesses, respectively, to a reorganization energy term 4. Xc 
denotes the value of the polarization coordinate at the point 
of the transition state hypersurface where the intramolecular 
coordinates have their initial equilibrium value (compare 
Fig. 1 of part I). 

One time scale of the reaction process is given by the 
thermal equilibrium expectation value of k(X): 

ke = (k(X»o = f: 00 dX k(X)Po(X) , (2.8) 

where ( )0 denotes averaging with respect to the equilibri
um distribution function Po (X). As will be discussed below, 
this time scale is to be compared with 1'L' the diffusive time 
scale. The rate constant ke has the valuel8 

ke ='Vq (1 + ~~)-1/2exp( -pAG*), (2.9) 

with a free energy barrier !l.G * given by 

!l.G * = ~ (1 + 4i) - IX2 • 
2 40 c 

(2.1Oa) 

X ~ is given in terms of the standard free energy of the reac
tion, !l. GO, and the reorganizational terms, 4 i and 4 0, by com
paring Eq. (2.1Oa) with the equivalent expression 18 

AG * = ~ (1 + !l.G 0)2 (2.1Ob) 
4 A' 

with A =Ao +Ai • 

It is of notational convenience to consolidate the molec-

ular parameters. By the transformation .J73 X -+ X the 
Fokker-Planck operator can be written in the convenient 
form 

L(X) =1'L-I~ [~+x], 
ax ax 

(2.2') 

and the Boltzmann distribution (2.4 ) becomes, after norma
lization, 

Po(X) =_I_ e -(1!2)X
2

• 

..j2i 
(2.4') 

Also, by the use ofEq. (2.9) the frequency factor 'Vq can be 
eliminated from the expression for k(X): 

k(X) ~ k, ~ 1 + -I, exp{ - P [<l.G(X) - <l.G oJ} , 
Ai 

with 

P!l.G(X) =~(40) (X_Xc)2, 
2 4i 

and Xc related to P!l.G * by 

X= c 2 ( 1 + ~J P!l.G· . 

(2.6') 

(2.7') 

(2.10') 

Therefore, the present model depends only on the diffusive 
and reactive time scales, i.e., on 1'L and k .. and on the reac
tion parameters A;/ Ao and P!l. G *. 

A quantity of experimental relevance is the fraction of 
reactant molecules that have not transferred their electron 
by time t, which was termed the survival probability in part I, 

Q(t) = f: 00 dX P(X,t) . (2.11 ) 

For the initial distribution P(X,t = 0) of the molecules we 
will assume the Boltzmann distribution (2.4) throughout 
this paper,22(C) since this case appears to correspond to a 
common experimental situation. Due to the electron trans
fer processes the function QU) decreases monotonically 
from 1 to O. Except in special cases, Q(t) cannot be evaluated 
analytically from Eq. (2.1) and, therefore, a simplifying ap
proximation (as in part I) or a numerical solution is needed. 

There are some qualitative arguments which can be giv
en concerning the functional form to be expected for QU)· 
For a large class of potentials, including the harmonic one, 
the operator [L(X) - k(X)] is expected to have a discrete 
spectrum of eigenvalues - r n with r n > 0 and so, in princi
ple, a spectral expansion of Q(t) can be given, 

Q(t) = f ane- rnt
, (2.12) 

n=1 

with the expansion coefficients an determined from the ei
genfunctions and from the initial distribution P(X,O). 
Therefore, we should expect a multiexponential relaxation 
behavior for Q( t) which, in certain parameter regions, may 
be approximated by one or two exponentials. 

As has been pointed out in part I, valuable information 
about the time behavior ofQ(t) is already given by the aver
age survival times: 

1'a = 100 

Q(t)dt, (2.13a) 

1'b = 100 

tQ(t)dii
oo 

Q(t)dt. (2.13b) 
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These quantities give an estimation of the time scale for the 
relaxation process ofQ(t) and give also some hints concern
ing the functional form of this behavior. A comparable value 
of To and Tb indicates, for example, that QU) exhibits an 
almost single-exponential decay, whereas strongly differing 
values indicate that the behavior is more complicated, e.g., 
bi- or multi-exponential. The quantity To is equivalent to the 
mean first passage time known from diffusion controlled 
processes,23 and its inverse serves as one estimate for the 
reaction rate of the electron transfer process. The relation 
between To and Tb will be further delineated during the 
course of this paper. The quantities Ta and Tb have been 
evaluated approximately in part I. Numerical results for 
these quantities are obtained in the present article and are 
given below in Sec. III, where they are also compared with 
the approximate results of part I. 

It is useful, at this stage, to review four limiting cases of 
Eq. (2.1) already discussed in part I. 

1. Fast diffusion limit, TLk" _0 (k" ¢O) 

In this limit the distribution of reactant molecules that 
experience the polarization coordinate X is at all times pro
portional to the thermal distribution (2.4), since deviations 
from this form rapidly decay due to the fast diffusional relax
ation processes. Therefore, the relation P(X,t) -::::;Po (X) Q( t) 
holds, and with this relation one can easily derive from Eq. 
(2.1) that QU) shows a single-exponential decay with ke as 
rate constant. 

2. Slow diffusion limit, TLk" - 00 (k" < 00) 

In this other extreme case the distribution of the polar
ization coordinate X seen by the reactant molecules appears 
to beJrozen in at the initial distribution P(X,O) , since practi
cally no diffusional relaxation occurs. Furthermore, each 
fraction of molecules that experiences a polarization coordi
nate X reacts with a rate constant k(X). Since the time be
havior of Q(t) is a superposition of these different reaction 
processes this case yields a well-known expression 

Q(t) = J: 00 dX Po(X)e-k(X)t. (2.14) 

Thus, in this limit the eigenvalues - rn in Eq. (2.12) are so 
closely spaced that the multiexponential form (2.12) has 
become essentially an integral. 

The two cases above were distinguished by the different 
limiting values for the ratio of the diffusive and reactive time 
scales, irrespective of the value for the other reaction param
eters. The following two cases are, in contrast, distinguished 
by different limiting values for the parameter AJ Ao, which 
regulates the width of the Gaussian reactive term k(X) and, 
therefore, will be called reaction window parameter. 

3. Narrow reaction window limit, A,IAo-O 

This limit corresponds to a vanishing contribution of the 
intramolecular degrees of freedom to the electron transfer 
reaction, i.e., Ai -::::;0. The reactive term now assumes the sim
ple form of a delta function 

k(X) =ke[Po(X)j-IO(X-X
C

) , (2.15) 

which makes it possible to give some analytical results. For 
the case ke -+ 00 and Xc = 0 (i.e., paG * = 0), the form of 
QU) was derived in Ref. 24 and in part I to be25 

Q(t) 2. -I( -IITL) =-sm e . (2.16) 
1T 

Analytical results for the average survival times for the other 
values of ke and Xc are derived in the present paper. 

4. Wide reaction window limit, A,IAo- Of) 

In this other extreme case of the reaction window pa
rameter the contributions from the solvent to the electron 
transfer process vanish, Ao being zero. The reactive term is 
practically constant and equal to ke over the relevant range 
of the potential. Therefore, in this limit the time behavior of 
QU) is simple again, being a single-exponential decay with 
ke as rate constant. 

Before we proceed to describe the method employed in 
this paper to evaluate numerically the average survival times 
(2.13) and the survival probability Q(t), we would like to 
discuss first the relation of the model presented here to sever
al reaction diffusion models treated in the recent chemical 
physics literature.26 The physical description of the electron 
transfer process underlying these models has already been 
discussed in part I. 

Reaction~iffusion models for electron transfer pro
cesses coupled to solvent polarization fluctuations without 
the inclusion ofintramolecular degrees offreedom have been 
treated in several papers. 12(a),13,17 Though different ap
proaches were employed in these investigations the models 
derived had quite comparable features. They resulted in the 
description of the transfer process as a "diffusion" of the 
solvent polarization (or an equivalent coordinate) along a 
one-dimensional free energy surface of the reactant, with the 
reaction occuring via the crossing over to the free energy 
surface of the product at the intersection point of the two free 
energy surfaces. In the adiabatic case the crossing over to the 
product free energy surface occurs with unit probability. In 
this case, neglecting the backreaction, the reaction process 
can be viewed as a diffusion in a one-dimensional potential 
well with an absorptive boundary at the intersection point of 
the two free energy surfaces. When the intersection does not 
pass through the minimum of the reactant's free energy sur
face there is a reaction barrier, and for high enough barriers 
the approach of Kramers27 can be employed to derive ex
pressions for the reaction rate. l3

·!7 In the nonadiabatic case 
the crossing over to the product free energy surface at the 
intersection point occurs with a probability of less than one 
and, therefore, the part of the reactant free energy surface 
that lies energetically higher than that of the product free 
energy surface can be reached. In this case, again with ne
glect of the back reaction, the reaction process is described 
by a diffusion on the reactant potential curve including a 
reactive term of delta-function form at the intersection point 
of the potentials. 12(a) 

The model just described for a nonadiabatic electron 
transfer process corresponds to the narrow reaction window 
limit of our model, the point Xc representing the intersection 
point of the two free energy surfaces. The inclusion of intra-

J. Chern. Phys., Vol. 86, No.7, 1 April 1987 
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molecular degrees of freedom gives rise to a broadening of 
the delta-function reactive term to a Gaussian. 

In Ref. 15 a model was introduced where intramolecu
lar contributions to the electron transfer process enter 
through the inclusion of exchange processes of vibronic 
quanta. This gives rise to a reactive term k(X) consisting of a 
sum of delta functions centered at different values Xv of the 
polarization coordinate X, the separation of successive Xv's 
being proportional to the vibration frequency n. The respec
tive contributions of the various delta functions are given by 
Franck-Condon factors. The present model can be regarded 
as the classical analog of the semi-quantum-mechanical 
model presented in Ref. 15. Indeed, Boltzmann-weighted 
Franck-Condon factors assume the form of a Gaussian dis
tribution in the continuum limit. The models discussed in 
Refs. 12(b), 12(c), and 14, are also classical analogs of Ref. 
15. They correspond to the present model, in case the back 
reaction is neglected, with a similar k(X) in case of Ref. 14 
and k(X) unspecified in case of Refs. 12(b) and 12(c). 

An extension of the present model to include the back
reaction is straightforward. One has to take into account the 
product distribution P (p) (X,t )dX, i.e., the fraction of mole
cules that have already transferred their electron and experi
ence a solvent polarization in the interval (X,x + dX), in 
addition to the reactant distribution P(X,t)dX. Equation 
(2.1) is then replaced by the coupled equations28 

~ P(X,t) = [L(X) - k(X) ]P(X,t) at 
+ k (p)(X)P(P)(X,t) , (2.17a) 

:t p(p)(X,t) = [VP)(X) - k (p)(X)] 

XP(P)(X,t) +k(X)P(X,t) , (2.17b) 

where Vp)(X) is given by Eq. (2.2), with the potential 
U(X) replaced by the product potential U (p) (X); k (p) (X) 
is the X-dependent reactive term for the back reaction which 
was neglected in part I and in Eq. (2.1). Equations (2.17) 
have to be solved subject to appropriate initial conditions, 
e.g., P (p) (X,t = 0) = 0 and a Boltzmann distribution for 
P(X,O). 

For simplicity of presentation, such an extension was 
not considered in part I and will not be considered here. 
However, it can be readily treated, and we shall do so in a 
later publication. We may note, although, that we do not 
expect that the results will change qualitatively. As was al
ready discussed in part I, the inclusion of the backreaction 
effect typically changes the resulting rate for equilibration by 
a factor of two or less when k(X) >k (p) (X), which is usually 
the case in experiments. 

In closing this discussion we may note that reaction
diffusion models which correspond to the model of the pres
ent paper have also been applied in physical situations that 
are quite different from the above discussed electron transfer 
problems. The narrow reaction window limit of our model 
for the parameter values Xc = 0 and ke ...... 00 was treated ana
lytically by Schulten et af. 24 in the context of protein folding. 
A reaction-diffusion equation with a functional form similar 
to our model was derived by Agmon and Hopfield29(b) for 

the description of the anomalous binding behavior of CO to 
the heme group in myoglobin. They treated their model by 
both direct numerical integration ofEq. (2.1) and by calcu
lating the spectral expansion (2.12) numerically . Numerical 
values for the average survival time 1"a have been obtained by 
them by a method29

(a) somewhat similar to ours, to be pre
sented in Sec. II C. Bagchi et al. 30 used a similar equation for 
the description of electronic relaxation processes in solvents. 
They employed an expansion in a set of orthogonal functions 
for their analysis. 

We shall use here a different approach, based on the 
generalized moment expansion of the survival probability 
Q(t). 

B. Generalized moment expansion 

To construct an approximation to Q(t) we start, as in I, 
with the Laplace transform 

Q(s) = LX> dt e - SlQ(t) . (2.18) 

In Ref. 21 it has been demonstrated that, by the use of the 
adjoint Fokker-Planck operator, which has the form 

L+(X) =1"L 1 [~-x]~, (2.19) 
ax ax 

forL(X) givenbyEq. (2.2'), the Laplace transform of many 
observables can be written as the matrix element of a non
Hermitian resolvent operator. In our case, this matrix ele
ment has the form 

Q(s) = Ol[s-L+(X) +k(X)]-lll)o, (2.20) 

where ( I )0 denotes a scalar product with Po(X) as weight 
function,31 

(UjV)o= J:.., dXPo(X)U(X)V(X) , (2.21) 

and 1 in Eq. (2.20) is the unit function which represents the 
operand ofthe resolvent operator [s - L + (X) + k(X) ] -I. 

Q(s) has the following asymptotic expansions for high 
and low frequencies: 

.., 
Q(s) -S-I 2: (- s) - nILn for s ...... 00 , (2.22a) 

n=O 

Q(s)- f (-s)nIL_n_1 for s ...... O, (2.22b) 
n=O 

with the expansion coefficients, the generalized moments, 
given by 

ILn = OI[k(X) -L+(x)]nIOo . (2.22c) 

These generalized moments determine the high- and low
frequency behavior of Q(s), i.e., the short- and long-time 
behavior of Q(t). Once the ILn are known they can be used 
for the construction of an approximation q(s) to Q(s). In 
our case, since we are interested in the numerically correct 
description of the behavior of Q(t) over the whole time 
range, such an approximation q(s) should be designed to 
reproduce the correct high-frequency as well as the correct 
low-frequency behavior of Q(s) in a balanced way. We shall, 
therefore, require that the approximation q(s) of order N 
reproduces N low-frequency and N high-frequency mo
ments. As functional form for q(s) we choose a sum of N 
Lorentzians, 
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N 

q(s) = I In(s+1"n- I )-I, (2.23a) 
n=1 

which leads, in the time domain, to a sum of N exponentials, 
N 

q(t) = I /ne - th'n. (2.23b) 
n=1 

The sum of exponentials (2.23b) is, therefore, optimized in 
the sense that q(t) gives the correct short- and long-time 
behavior of the exact function Q(t). Typically, the number 
of exponentials needed to adequately represent Q(t) is much 
less than needed by using a spectral expansion (2.12). 

The functional form (2.23a) of q(s) together with the 
requirement of the correct asymptotic behavior in the limits 
s--+O and S--+ 00 makes it a two-point [N - I,N]-Pade ap
proximant 32 to Q(s). From Eqs. (2.22) and ( 2.23) it follows 
that the parametersln and 1"n are solutions of the equations 

N 

Iln1"n m =f.L_m, m= -N,-N+l, ... ,N-I. 
n=1 

(2.24) 

An actual algorithm for the solution of these nonlinear equa
tions for 1" n andln is given, e.g., in Refs. 20 and 33. However, 
for N = I and N = 2 solutions to Eq. (2.24) can be found 
quite easily. 

The single- and bi-exponential descriptions of Q(t) are 
of particular interest since they are determined solely by k e , 

1" a' and 1" b' This can be seen from the fact that the first high
and low-frequency moments have the following representa
tions: 

f.LI = (k(X»o = ke , 

f.Lo = (1)0 = 1 , 

f.L-l = f" Q(t)dt = 1"a , 

f.L-2 = 1"" tQ(t)dt = 1"a1"b . 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

We note that the average survival times 1"a and 1"b are given 
by f.L-l andf.L-2/f.L-l' respectively, which will be employed 
for the determination of 1" a and 1" b in Sec. III. With the above 
representations of the moments the corresponding approxi
mations q (t) assume the forms 

qa (t) = e - tha for N = I , 

and 

q2(t) =/le-tIT, + 12e-thz for N = 2, 

with 1"1,2 andfI,2 given by 

and 

1"1,2 (I - 1"2,1 k e ) 
/1,2 = ± --=.::...----=:.:.......:-

(2.26) 

(2.27a) 

(2.27c) 

Here, the upper algebraic signs refer to 1"1 and/1• For 1" a :::: 1" b 

it is seen immediately that q2(t) reduces to the single-expo
nential function qa (t). By comparing q2(t) and qa (t) with 
higher order approximations we will analyze in Sec. IV how 
good their quality is in different parameter regions. 

In closing this subsection we would like to point out also 
that a single-exponential approximation that is solely deter
mined by the two low-frequency moments f.L-I and f.L-2 
leads to 1"b as the relaxation time. The resulting approxima
tion 

1" 
(t) 

_ a -tho 
qb --e (2.28) 

1"b 

is, therefore, expected to describe the asymptotic long-time 
behavior of Q(t) correctly. 

C. Numerical determination of the generalized 
moments 

For the numerical evaluation of the generalized mo
mentsf.Ln given by Eq. (2.22c) it is convenient to transform 
the Fokker-Planck operator (2.2') or its adjoint into a Her
mitian, symmetric form. 34 This Hermitian operator L (s) (X) 

[which is equivalent to the operator - H(X) in part I] is 
related to L(X) and L + (X) in the following way: 

VS)(X) =Po-I(X)L(X)po(X) =Po(X)L+(X)PO-I(X), 

(2.29) 

where we have used the square root of Po(X), 

Po(X) = ~Po(X) , (2.30) 

as a transformation operator. With the operator L (s) (X), the 
matrix element in Eq. (2.20) can be rewritten as the matrix 
element of a Schrodinger operator: 

f.Ln = (Po(X) 1 [k(X) -Vs)(x)]nlpo(X»' (2.31) 

( 1 ) is now the usual scalar product with a constant weight 
function equal to 1. 

The next step is the introduction of auxiliary functions 
f.Ln (X) defined by 

f.Ln(X) = [k(X) -Vs)(x)]npo(X)' (2.32) 

Once these auxiliary functions are known, the moments f.Ln 
can be calculated from them by evaluation of the scalar prod
ucts 

f.L2n = (f.Ln (X) 1 f.Ln (X» , 

f.L2n - 1 = (f.Ln _ 1 (X) 1 f.Ln (X» . 

(2.33a) 

(2.33b) 

In particular, the moments f.L-I and f.L-2 can both be deter
mined from the single auxiliary function f.L -I (X) through 

f.L-l = (Po (X) 1f.L-I (X» , 

f.L-2 = (f.L-I (X) 1f.L-l (X» . 

(2.33c) 

(2.33d) 

The determination of the auxiliary functions Eq. (2.32) 
is straightforward in the case of high-frequency moments, 
i.e., for n;;"O. One simply operates successively on the func
tions f.Ln _ 1 (X), n > 0: 

(2.34) 

beginning with f.Lo(X) = Po(X), and thereby iteratively cre
ating the high-frequency auxiliary functions of ever increas-
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ing order n. For the low-frequency auxiliary functions, i.e., 
for n <0, multiplication of Eq. (2.32) on the left with the 
operator k(X) - LiS) (X) results in the following differen
tial equations for the J-l- n (X) : 

[k(X) - L(s) (X) ]J-l- n (X) = J-l- (n _ I) (X), n > 0, 
(2.35) 

which have to be supplied with appropriate boundary condi
tions21 {in our case Po(X) (d IdX) [ J-l- n (X)I Po(X)] -+0 
as X -+ ± oo}. By iteratively solving these equations, again 
beginning with J-lo(X) = Po(X) as right-hand side, we can 
calculate the low-frequency auxiliary functions of ever in
creasing order - n. 

In most cases Eqs. (2.35) cannot be solved analytically. 
An exception is the narrow reaction window limit and it is 
treated in Appendix A. However, Eqs. (2.35) can be solved 
numerically and for this task we employ a particular discreti
zation procedure21

,29(a) which was justified mathematically 
in Ref. 21. 

We first limit the infinite diffusion space to a finite inter
val [Xmin,xmax] whereXmin andXmax are chosen so that the 
relevant parts of the stationary distribution Po (X) and of the 
reactive terms k (X) are included. In the cases we considered 

a choice Xmax = - X min = nx~ (X 2)0' with nx ranging 
from 4 to 7, was sufficient, in general. In each case a check 
was made to determine whether the numerical results are, in 
effect, independent of n x' 

Next, this finite diffusion space is discretized into Nx 

cells. Inside those cells the representative discretization 
points are chosen through 

XU) = Xmin + U - !)is, i = 1, ... ,Nx , (2.36) 

with is being the discretization length, is = (Xmax - Xmin)1 
N x • In our applications we have found that a choice of N x in 
the range from 50n x to lOOn x was sufficient to produce re
sults independent of the step size. Again, the results were 
checked that they became, in effect, independent of this 
choice of Nx ' 

In a diffusion space discretized in this manner, the dif
ferential operator LiS) (X) becomes a symmetric matrix op
erator LiS) of the following tridiagonal form21

: 

{

T {j- I for i = j ± 1 

LijS)= -[WU-+i+l)+WU-+i-l)] fori=j, 

o for all other i,j 
(2.37) 

with T{j being the time scale of the discretized operator, T{j 

= tPT L' W(i -+ j) is a "transition rate" between cells: 

W(' .) - - I Po [X(j) 1 (2.38) 
1-+] - T{j Po [X(i) ] . 

In an analogous way the reactive term in Eq. (2.35) becomes 
a diagonal matrix, K, with elements 

Kij = k [XU) liSij . (2.39) 

Therefore, Eqs. (2.34) and (2.35) for the generations of 
the high- and low-frequency auxiliary functions become lin
ear algebraic equations (n > I): 

(2.34') 

[K-LlS)]~_n =~-(,,-l)' (2.35') 

where the functions J-l" (X) have been replaced by vectors ~n 
through 

( ~n)j = J-l" [XU)] . (2.40) 

Because of the simple tridiagonal forttl of L (s), the linear 
equations (2.35') for the discretized low-frequency auxiliary 
functions ~ _ n can now be solved easily using a Gaussian 
elimination procedure.3S In addition, Eq. (2.34') also pro
vides an effective alternative way for the numerical deter
mination of the discretized high-frequency auxiliary func
tions ~n' For the final evaluation of the moments the scalar 
products (2.33) are evaluated simply as scalar products of 
the vectors ~", 

III. RESULTS ON AVERAGE SURVIVAL TIMES 

In the present section numerical results for the average 
survival times Ta and Tb are presented. The results were cal
culated with the algorithm described above, i.e., the general
ized moments J-l-l and J-l- 2 were evaluated numerically ac
cording to Sec. II C, and from Eqs. (2.25c) and (2.25d) Ta 

and'Tb follow. 
Figures 1 to 3 cover the same parameter and time range 

mean survival time T a 

3 

f36.G' : 0.0 

0.2 

0.5 

0~----~~~~~~~~~::==~~1~.0==J 

3 

-2 -1 0 2 3 

mean survival time T b 

(36.G' : 0.0 
\/>"0 = o.o~ 

0.2 
0.5 

2.0 

L ______ ~~~~~~~~==::~ __ ~5~.0~ 
o 3 -2 -1 0 2 

loglO TLke 

FIG. 1. Average survival time To (a) and 1'. (b) vs solvent polarization 
relaxation time T L for various values of the reaction window parameter 
,1,1,10' The reaction barrier parameter is PI::.. G * = o. 
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FIG. 2. Same as Fig. 1 for /3/l G * = 1. 

as the approximate results of part I and, to facilitate com
parison, are given in the same scale. The approximation in 
part I agrees quite well with our numerical results in the fast 
diffusion regime (1' L ke ~ 1 ), in the intermediate diffusion 
regime ( 1" L ke Z 1), and when the reaction window is narrow 
(A;lAozO). For large values of A;lAo the agreement in the 
slow diffusion regime (1" L k. > 1) is not good. 36 

It is useful to consider analytically the behavior for large 
values of the reaction window parameter A;lAo' In particu
lar, for A;lAo> 1 in case of 1"a and for A;lAo > 2 in case of 1"b' 

respectively, the average survival times can be shown 
straightforwardly to assume finite values in the slow diffu
sion limit. These limiting values are given by expectation 
values of the inverse reactive term: 

1"a (00) = < [k(X)] -1)0 

----.--(A;lAo)2 

(A;lAo)2 - 1 

(3.1a) 

3 

u 

~" 2 
I"-

3 

mean survival lime T a 

{JAG' = 2.0 

2.0 

5.0 

mean survival time T b 

(3l:J.G· = 2.0 

o~~~~~~--~--~--~ 
-2 -1 0 2 3 

FIG. 3. Same as Fig. I for /3/lG· = 2. 

[ 
4(A;lAo-~)/3!l.G'" ]1' 1/'1 2 Xexp lor /l.i /1.0> . 

(A;lAo - 2HA;lAo - 1) 

(3.1b) 

For smaller values of the reaction window parameter AJ Ao 
these expressions are seen not to be defined, and the average 
survival times then indeed approach infinity rather than a 
finite value when 1"Lke -+ 00. 

That the average survival times approach a finite value 
as 1"Lke -+ 00 is seen, for example, in the curves for A;lAo 
= 5.0 in Figs. 1 (b), 2, and 3. To illustrate this limiting be

havior more fully, and to illustrate also the behavior de
scribed by Eq. (3.2) below, the results corresponding to the 
parameters of Figs. 1 to 3 are plotted over an extended time 
regime in Figs. 4 to 6. In these figures the curves for A;I Ao 
= 2.0 in case of To' and for A;I Ao = 5.0 in case of To and Tb 

convincingly show the limiting behavior, Eq. (3.1). 
At A;I Ao = 0, on the other hand, one sees that the log

log plots of 1" a and l' b VS TL in Figs. I to 6 (and laterin Fig. 7) 
show a slope of unity. In the intervening region, o <A;lAo 
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FIG. 4. Same as Fig. 1 for an extended range ofTL • 

< 1 for 7" a and 0 < A/ lAo < 2 for 7" b' one would expect that the 
limiting log-log plots exhibit a slope between zero and unity, 
corresponding to a power-law dependence, 

(3.2a) 

and 

7"b o:.7"~b (O<ab<l) , (3.2b) 

of the average survival times on the solvent relaxation time 
7" L in the slow diffusion regime (7" L ..... 00 ). Figures 4 to 6 
show that this holds to a very good degree. We note also that 
the apparent value for the exponent depends on the range of 
values for 7"Lk. under consideration. In Tables I and II 
asymptotic numerical values are given for the exponents aa 
and a b for different values of reaction window parameter 
A/lAo an,d of the reaction barrier parameter f3AG *. In each 
case a becomes unity in the narrow reaction window limit. 

This numerical result for solvents that are characterizeQ 
by a single polarization relaxation time 7" L, namely that the 
inclusion of intramolecular coordinates causes the average 

mean survival time T a 
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.. 

..\I: 6 .. 
I-

~ 
bD 

oS 4 

2 

2. 

0 
-2 0 2 4 6 8 10 

loglO TLke 

mean survival time Tb 

10 

A/Ao = o.o~ 
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loglO TLk. 

FIG. S. Same as Fig. 2 for an extended range of T L' 

survival times 7" to depend on 7" L approximately in an alge
braic form (3.2), is particularly interesting. It deviates 
strongly from the simple 7" 0:. 7" L behavior that results from 
the usual modelsI2 (al.13.17 in which electron transfer reaction 
processes have no contribution from intramolecular degrees 
of freedom. It is also different from the results in Refs. 
12(b), 12(c), 14, and 15, where intramolecular contribu
tions were considered. There, only limiting cases were treat
ed that led also to a simple 7"et:. 7"L behavior in the large 7"L 

regime, corresponding to the behavior we found in our mod
el for the narrow reaction window limit. 

In the fast diffusion region, 7"Lke < 1, the momentsll_n 
can be formally expanded in a power series in the inverse 
Fokker-Planck operator (a detailed derivation is given in 
Ref. 37), 

1l_1=ke-l-k~2 

X (l18k(X)[L + (X)] -18k(X) 11) + O( Ti) , 
(3.3a) 
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/-L-2 = k .-2 - 2k .-3 

8 10 

8 10 

X (11c5k(X) [L + (X)] -1c5k(X) 11> + O( ri) . 
(3.3b) 

Since L + (X) ex: 'T1: I, such a series corresponds to an expan-

TABLE I. Asymptotic values" for the anomalous exponents a •. 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

o 

1.00 
0.84 
0.74 
0.64 
0.54 
0.44 
0.34 
0.24 
0.15 
0.08 

1.00 
0.90 
0.83 
0.76 
0.69 
0.62 
0.50 
0.49 
0.43 
0.35 

2 

1.00 
0.90 
0.85 
0.79 
0.81 
0.69 
0.63 
0.57 
0.45 
0.45 

"The asymptotic values for the anomalous exponents have been determined 
in the region lQ2<TL k.< 1010; approximate anomalous exponents in a re
gion for smaller values ofT L k. may be smaller, see the text for a discussion. 

TABLE II. Asymptotic values" for the anomalous exponent abo 

~ 
0 2 

A.,1 A.o 

0.0 1.00 1.00 1.00 
0.2 0.97 0.96 0.94 
0.5 0.96 0.95 0.93 
1.0 0.91 0.91 0.90 
1.5 0.87 0.80 0.39 

"See footnote a, Table I. 

sion in powers of 'T L' Equations (3.3) are well defined and 
there is no possibility for a singularity of the matrix element 
of [L + (X)] -I since the function c5k(X) = k(X) - k. can 
be shown to lie outside the null space of L + (X). This is 
discussed in detail in Appendix B. We may note that the 
linear approximation (3.3a) has also been derived by 
Weiss38 for a system of the form (2.1) by employing the 
Wilemski-Fixman approximation.39 Equation (3.3a) was 
derived also in part I under the assumption of a single expo
nential decay of QU) in the fast diffusion regime. 

To first order in 'T L Eqs. (3.3) give the same expression 
for'Ta and'Tb , 

'Ta,b = k e- 1+ F(A;/Ao,paG *)'TL + O(ri) , (3.4) 

where the function F(A;/ Ao, paG *) is given by the matrix 
element in Eq. (3.3) and has already been derived in part I to 
be 

F(J...IA paG *) = In [2 (1 + e
2

) ] 
I 0' (1 + e)2 

I
I eO - ",2) pllGa - 1 

+2 dx 2' 
c I-x 

(3.5) 

withe = (1 + lAo/Ai )-1/2. The integral in Eq. (3.5) can be 
evaluated by standard numerical methods35 and numerical 
values for Fare given in Ref. 19(b). 

A comparison with the numerical results for 'Ta and'Tb 
shows that the quality of the approximation (3.4) is some
what better in case of 'Tb • In case of'Ta the approximation 
(3.4) is valid in the narrow reaction window regime (A;/ Ao 
:::::0, see also the discussion below). In the other regions of 
the parameter space the approximation is valid for 'Ta within 
a factor of2, giving a rule of thumb, as long as the correction 
term is not larger than k .- I. For larger correction terms the 
deviations from the exact results for 'Ta can be significant. In 
case of'T b the approximation is quite applicable, Le., within a 
factor of 2, in a larger range of the narrow reaction window 
regime (up tOA/Ao:::::0.5) for small barrier' heights. Table 
III illustrates this point. For larger values of the barrier 
height parameter paG * the deviation becomes larger in the 
slow diffusion regime, a feature also illustrated in this table. 
In general, strong deviations of the approximation (3.4) 
from the numerical results occur mainly in the slow diffusion 
regime (large 'T L ), as to be expected. This demonstrates also 
that an extension of the Wilemski-Fixman approximation to 
this regime can be strongly erroneous. 
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TABLE III. Comparison of approximation (3.4) for l' b with numerical results.· 

Eq. (3.4) Eq. (3.4) 
1'L ke (A.,IA.o = 0) Exact (A.,I A.o = 0.2) Exact 

(JAG· = 0 

1 1.7 1.9 1.3 1.3 
10 7.9 1.0(1 ) 3.5 5.1 
102 7.0( 1) 9.5( 1) 2.6(1 ) 3.8(1) 
10' 6.9(2) 9.4(2) 2.5(2) 3.1(2) 

(JAG· = 1 

1 4.6 5.1 3.1 3.2 
10 3.7(1) 4.3(1 ) 2.2(1) 1.8(1 ) 
102 3.6(2) 4.2(2) 2.1(2) 1.3(2) 
10' 3.6(3) 4.2(3) 2.1(3) 9.7(2) 

(JAG· =2 

I 1.1 (1) 1.1 (l) 6.6 5.4 
10 9.8(1) 1.0(2) 5.7(1) 3.1 (I) 
WZ 9.7(2) 1.0(3 ) 5.6(2) 2.1(2) 

(JAG· = 10 

1 1.3(4) 1.3(4) 2.7(4) 1.3(2) 

• Numbers in parentheses indicate powers of 10. 

We have also checked the applicability of a simple 
[ 1,1] -Pade approximation 

F1' L l' a,b ( 00 ) + k e- , [ l' a,b ( 00) - k e- I] 
1'ab'Z " (3.6) 

, F1'L + [1'a,b (00) - k e- ] 

withF from Eq. (3.5) and 1'a,b (00) the limiting values [Eq. 
(3.1)] of the average survival times. Equation (3.6) holds 
for A;/Ao> 1 in case of 1'a and for A;/Ao> 2 in case of 1'b and 
interpolates between the slow and the fast diffusion regime. 
However, in the region of intermediate values for 1'L ke , i.e., 
the region where the change of l' a and l' b is strongest, strong 
deviations of Eq. (3.6) from the exact results may occur, 
unless A.; 1..1.0 is large. Therefore, the use of an approximation 
such as (3.6) is not recommended unless ..1.;/..1.0 is large. 

In the narrow reaction window limit, A;/ ..1.0 = 0, a nu
merical evaluation of the moments according to Sec. II C is 
not possible due to the singular form (2.15) of the reactive 
term. However, as demonstrated in Appendix A, the deriva
tion of analytical formulas for the moments in terms of mul
tiple integral expressions is possible. With these results the 
average survival times are given by 

1'0 =k e- ' 
+I,1'L (..1.;/..1.0=0), (3.7a) 

_ , (12 - Ii )"Ti 
'1'b =ke +I,1'L + , (..1.;1..1.0=0), 

k e- + I,1'L 

(3.7b) 

with I, and 12 being functions of Xc given in Eq. (A8) and 
Table IV; Xc is related to{JaG * throughEq. (2.10'). As also 
shown in Appendix A, the narrow reaction window limit of 
the function F, i.e., Eq. (3.5) with c = 0, is identical to the 
term linear in '1'L in Eq. (3.7a), I,. Therefore, in the narrow 
reaction window limit the approximation linear in 1'L is al
ready correct for '1'a and terms of higher order in 1'L vanish 
altogether. Although such a simplification does not apply 

Eq. (3.4) 
(A.,I.4.0 = 0.5) Exact 

1.1 1.2 
2.4 3.0 
1.5(1) 1.8(1 ) 
1.4(2) 1.3(2) 

2.5 2.5 
1.6(1 ) 1.2(1) 
1.6(2) 7.1 (1) 
1.5(3 ) 4.9(2) 

4.9 3.8 
4.0(1) 1.8(1 ) 
3.9(2) 1.1(2) 

8.1 (2) 3.5( I) 

for1'b' the third terminEq. (3.7b) being of second order and 
higher in 1'L' l' b is approximately linear in 1'L in the slow 
diffusion regime, however, with a different slope than 1'a, 

1'b 'Zk e-' + (12III)'1'L' for'1'L:>k e- 1 and ..1.;/..1.0 = 0 . 

(3.7b') 

For large values of Xc, i.e., for large values of the reaction 
barrier parameter {JaG *, the ratio 12/1, approaches I, nu
merically, see Table IV. Therefore, for large reaction bar
riers 1'a and 1'b become equal when ..1.;/..1.0 = 0, and a truly 
single-exponential relaxation of Q(t) is to be expected. We 
consider below the case of large {JaG * for general values of 
..1.;/..1.0' which also exhibits a single-exponential behavior. 

The curves for the narrow reaction window limit in 
Figs. 1 to 6 (as well as in the later figures) have been calcu
lated from Eq. (3.7) with the values for the integral expres
sions I, and 12 given in Table IV in Appendix A. 

In Fig. 7 we include some results for high reaction bar
riers. In the range of 1'L ke examined the values for l' a and l' b 
are approximately equal, and SO there is a single exponential 
decayofform (2.25) forQ(t) in this regime. We note that in 
this case, too, the dependence of 1'a on 1'L appears to exhibit 
an approximate power-law behavior (3.2) over some range 
of'1'Lke' It may also be noted that due to the inclusion of 
intramolecular coordinates the observed reaction rate con
stant 1'a- I can well be some decades larger than the rate that 

would be expected from the barrier height alone, i.e., from 
'1'-I'Z'1'i' exp( -{JaG*). 

Of particular experimental interest is the dependence of 
the average survival times on the free energy barrier {JaG *. 
This quantity is related to the standard free energy of the 
reaction, aGo, through Eq. (2.lOb), and aGo can be 
changed experimentally at approximately constantA.; andAo 
by suitable changes of the reactants. 
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FIG. 7. Average survival time 1'. vs solvent polarization relaxation time 1'L 

for several values ofthe reaction window parameter A,/ Ao in the fast and 
intermediate diffusion regime. The reaction barrier parameter is relatively 
high with (a)/3f1G* = 8; (b)/3f1G* = 9; (c)/3f1G* = 10. The dotted line 
indicates the plot for a function l' = 1'L exp( /3f1G *). 

In the narrow reaction window limit, ,.1.;1,.1.0 = 0, the de
pendence of 7'a on/JaG '" is given by Eq. (3.7a). For larger 
values of/JaG"', Eq. (3.7a) can be approximated as40 

(3.8) 

The integral is related to Dawson's integral41 and ap
proaches the value ~ ( /Ja G "') - 1/2 exp ( /Ja G "') for large 
values of the free energy barrier parameter. Taking into ac
count also the dependence of ke on /JaG "', Eq. (2.9), we 
obtain the relation 

7'a 0:: exp( /Ja G "') ( /JaG'" large) (3.9) 

for the dependence of the average survival time 7'a on/JaG '" 
in the narrow reaction window limit. With Eq. (2.1Ob) the 
relation 

(3.10) 

follows for the dependence of 7'a on the experimentally con
trollable parameter /Ja GO. In particular, Eq. (3.10) predicts 
the usual linear dependence ofln 7'a on /JaG ° for small val
ues of aGo/A with a slope oq. 

Numerical results for the dependence of 7'a on/JaG '" are 
shown in Fig. 8 for several values of the reaction window 
parameter ,.1.;1,.1.0 and of the time-scale ratio 7'Lke (0), where 
ke (0) is the value of ke at barrier height/Ja G '" = O. Since 7'b 

is approximately equal to 7'a for larger values of /JaG'" (see 
also the discussion of Fig. 7 above) we give only the results 
for 7'a' We note that in Fig. 8 the time scale is normalized by 
ke (0), in contrast to the normalization of the time scale in 
Figs. 1 to 7. In Fig. 8 (a) it is seen that in the narrow reaction 
window limitthe relation (3.9) holds already for /JaG'" > 1. 
Figures 8 (b) and 8 (c) show that this relation also holds for 
,.1.;1,.1.0#0, although only ultimately for larger values of 
/JaG *, depending on the magnitude of 7'Lke (0). We note 
that in case oflarge values of 7' L ke (0) the dependence of 7' a 

on /JaG'" over some intermediate range of values for /JaG '" 
can be approximated well by 

7'a o::exp(a/JaG"') , (3.9') 
with O<a < 1, instead of by Eq. (3.9). 

The dependence of 7'a on /JaG 0 that follows from the 
results in Fig. 8 via the rescaling according to Eq. (2.1 Ob) is 
shown in Fig. 9. We may note that, because ofEq. (2.1Ob), 
the actual dependence of 7'a on /JaG ° depends also on the 
value of /JA. We have chosen a not atypical value of /JAo of 
40, corresponding to a value of about 24 kcallmol for the 
solvent contribution ,.1.0 to the reorganization energy param
eter A at room temperature. It is seen in Fig. 9 that even in the 
narrow reaction window limit, A j /,.1.0 = 0, there is a quadrat
ic dependence ofln 7'a on /JaG 0 when/JaG ° is varied over a 
large range. For small values of aG 0/,.1. a linear dependence 
with slope ! holds. Moreover, since for nonzero values of 
,.1.;1,.1.0 the behavior of 7'a deviates from the relation (3.9) 
over some range of /JaG'" for large 7'Lke (0), there are also 
deviations from a quadratic dependence ofln 7' a on/J aG ° in 
these cases. This can also be seen from the fact that in Figs. 
9 (b) and 9 (c) the curves for larger values of 7' L ke (0) are no 
longer parallel to the curve for 7'Lke (0) = 1, which still 
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shows a quadratic dependence ofln 1"a onflil.Go. 
In closing this section we like to summarize our results 

on the possibility of a simple approximate description of the 
results for 1"a and 1"b' We have noted that Eq. (3.4) is a good 
approximation when A;/ Ao = 0, and, in case of 1"b' it is also 

~" 
l--

.E 
10 

8 

6 

4 

2 

2 4 6 8 10 12 14 

(3t:.G* 

FIG. 8. Average survival time T. vs reaction barrier parameter /31:1 G· for 
various values of the reaction window parameter A.J ,.1.0 and of the time-scale 
ratio TLk.(O); (a) A.JA.o = 0; (b) A.JA.o = 0.2; (c) A.JA.o = 0.5. The time 
scales are normalized to k. (/3I:1G· = 0), in contrast to the normalization 
in Figs. 1 to 7. 

good provided A;/ Ao and flil. G * are both relatively small, 
see Table III. In case of A;/ Ao = 0, also the exact solution 
( 3.7) is available. For large values of Ai / Ao, Eq. (3.6) pro
vides an acceptable approximation. Whenflil.G * is large 1"a 

and 1" b become equal and so the decay of Q(t) becomes single 
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FIG. 9. Average survival time 1'. vs reaction standard free energy /31:1. G 0 for 
various values of the reaction window parameter ..1,/..1,0 and of the time-scale 
ratio 1'Lk. (0); (a) ..1,/..1,0 = 0; (b) ..1,/..1,0 = 0.2; (c) ..1,/..1,0 = 0.5. The time 
scales are normalized to k. (/3I:1.G * = 0), in contrast to the normalization 
in Figs. 1 to7. The dotted lines denote the relation 1'. cxexp(~/3I:1.Go) which 
holds for small values of I:I.G 0/..1,. 

exponential. In that case the relaxation time 'Ta becomes 
equal to the inverse of the lowest eigenvalue of the operator 
k(X) - L(S) (X). An alternative and more familiar way to 
calculate 'T a would be in this case to use standard methods 
for solving one-dimensional quantum mechanical eigenval
ue problems, instead of solving Eqs. (2.35) or (2.35'), re
spectively, for the auxiliary function,u_1 (X) and using Eq. 
(2.33) to calculate the generalized moment ,u-I' which is 
equal to 'Ta' 

IV. RESULTS ON THE RELAXATION OF Q(t) 

We have also investigated the relaxational behavior of 
Q(t) by employing the generalized moment algorithm of 
Sec. II B. The approximations q(t) to Q(t) presented below 
were N-exponential approximants (2.23) with the order N 
chosen so that approximants of higher order did not give rise 
to a recognizable change in the plotted behavior. This choice 
can be regarded as sufficiently exact since, in our experience, 
the convergence rate of the approximation algorithm of Sec. 
II B is quite fast, in general. The order N of these numerical 
solutions varied between 3 and lOin the various cases, corre
sponding to the degree ofmultiexponentiality Q(t) exhibit
ed. In the fast diffusion regime ('T L ke < 1) the relaxation of 
Q(t) is in effect single exponential and we refrain from giv
ing examples for this case . 

In Fig. 10 an example is given for the behavior of Q(t) in 
the intermediate 'TL regime, i.e., for 'TLke:::: 1, with ,1;1,10 
= 0.2. As can be seen, the relaxation is still almost single 

exponential. The approximations q a (t) and q b (t), Eqs. 
(2.26) and (2.28), respectively, describe the relaxation 
equally well, with qb (t) becoming exact in the long time 
limit. The bi-exponential description q2(t), Eq. (2.27), is 
indistinguishable from the numerical solution. 

surviving fraction Q(l) 

lr------.------,------,------,------, 

0.8 (3t:..G* 1.0 

0.6 

0.4 

0.2 

oL-----~----~~~~----~----~ 
o 5 10 15 20 25 

FIG. 10. Time behavior of the survival probability Q(t) in the intermediate 
diffusion regime, 1'Lke = J. Reaction parameters are A/A.o = 0.2 and 
/31::. G * = J. (-) is the numerical solution (see the text); (_._.) is the sin
gle-exponential approximation q. (t), Eq. (2.25); (- -) is the long-time ap
proximation qb (f), Eq. (2.27); ( ... ) is the bi-exponential approximation 
q2(t), Eq. (2.26). The function q2(f) is indistinguishable from the numeri
cal solution in this case. 
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FIG. 11. Same as Fig. 10 for TLke = 10. 

For still larger values of TLke atthis value of A.J A.o, the 
quality of single- and also ofbi-exponential approximations 
become less acceptable. Figure 11 gives an example for the 
value T L ke = 10. In this case the single-exponential approxi
mations already give an incorrect description of the relaxa
tion process of Q( t), although q b (t) captures the asymptotic 
long-time behavior and can still be considered an acceptable 
approximation for this time regime. A bi-exponential de
scription is still a good approximation in this intermediate 
d~ffusion case, as demonstrated byq2(t) in Fig. 11. Figure 12 
gives an example for an already somewhat extreme case of 
the time-scale ratio, i.e., for T L ke = 103

• Q( t) exhibits a truly 
multiexponential relaxation behavior and an approximation 
of order N = 10 constitutes the numerical solution in this 
case. The single- and bi-exponential approximations give 
now a totally wrong impression of the true behavior of Q(t). 
For example, qz(t) indicates an equilibration process to a 
quasistationary state which certainly does not take place. 
Rather, an algebraic decay 

Q(t) <xt -y (4.1) 

occurs over a range of about two to three decades, namely in 
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o -'-'-'-'-------'-'-'-'---'-

--..., 
(;-1 

-2 

fJtJ.G' = 1.0 

\/>"0 = 0,2 

TLke = 10
3 

_3L-____ L-____ ~ ____ -L ____ ~ __ ~~ 
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FIG. 12. Same as Fig. 10 for TLke = 103
, 
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FIG. 13. Time behavior of the survival probability Q(t) for different values 
of the time-scale ratio TLke' Reaction parameters are A,IAo = 0.2 and 
f3l:1 G * := 1. T~ere is seen to be an almost algebraic decay, Eq. (4.1), with 
r;:::O.1 In the tlme range 10- 1 < tke < 102 for TLk. = 103

. 

the range 10- 1 < tke < IOz. This algebraic decay goes over, in 
the long-time limit, to an exponential relaxation described 
byqb (t). In the example of Fig. 12 theexponentrhasa value 
of about 0.1. In general, the exponent r depends on the reac
tion parameters of the system. 

Figures 13 to 16 are intended to give an overview of the 
relaxational behavior ofQ(t) for different values of the reac
tion window parameter A. i / A.o' the free energy barrier param
eter Pll.G *, and the time-scale ratio T L k e • A common feature 
in the different curves is the algebraic character of the relaxa
tion, Eq. (4.1), over some range of time for large values of 
the time-scale ratio TLke as seen in the figures and discussed 
in the legends to the figures. The algebraic character of the 
relaxation is particularly noticeable for smaller, but non
zero, values of both the reaction window parameter and of 
the free energy barrier parameter. For large values of these 
parameters the curves tend to approach a single-exponential 

° 

-2 

surviving fraction Q(t) 

f3tJ.G' = 1.0 

\/>"0 = 0,5 

_3L-__ ~ ____ ~-L __ ~ __ ~~ __ ~~ 
-1 0 2 3 4 

FIG. 14. Same as Fig. 13 with A,I Ao = 0.5. There is seen to be an almost 
algebraic decay, Eq. (4.1), with r;:::O.2 in the time range 10- 0

,5 < tke < 101.5 

for TLke = 103
• 
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FIG. 15. Same as Fig. 13 withA;lAo = 2.0. 

behavior, as was already discussed for the limiting cases in 
Sec. II A and in Sec. III. 

In closing this section we would like to comment on the 
behavior of Q( t) in the nondiffusing limit 'T L ke -+ 00. In this 
case the application of the generalized moment algorithm is 
not possible since the low-frequency moments diverge, the 
divergence of each depending on .1;1.10 [see, for example, 
Eqs. (3.1) for I-l-l and 1-l-2 J. Therefore, a determination of 
the time behavior of Q( t) has to rely on a numerical evalua
tion of the integral (2.14). However, since in this limiting 
case no solvent dynamical effects influence the electron 
transfer process we refrain from giving examples. Moreover, 
the case of a distribution of reaction rates has previously 
been frequently treated, e.g., as a distribution of distances 
between donors and acceptors in electron transfer reac
tions42 or as a distribution of conformational substates in the 
low-temperature reaction dynamics of proteins.43 

surviving fraction Q{t) 

o r-;;s:::::--__ 

~ ..., 
a- 1 

-2 
TLke = 10

2 

A/Ao = 0.5 
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-3L-----~------~------~~--~~~ 

-1 o 2 3 

FIG. 16. Time behavior ofthe survival probability QU) for different values 
of the reaction barrier parameter PI::.G *. ParametersA,IAo = 0.5 and TLk. 
= Hf. There is seen to be an almost algebraic decay, Eq. (4.1), with r:::::0.8 

in the time range 100 $ Ike $ 10' for PI::. G • = O. 

v. DISCUSSION 

We first comment on the methodological approach. The 
results presented in the last two sections demonstrate that 
the generalized moment algorithm ofSecs. II B and II C is a 
rather powerful method for the analysis of reaction-diffu
sion equations over the whole range of parameters. In parti
cular, even the partly algebraic relaxation, Eq. (4.1), ofQ(t) 
in the slow diffusion regime could be revealed by this meth
od, although the functional form of the approximation is 
multi exponential only. In the fast and intermediate diffusion 
regimes the simplified single- and bi-exponential approxima
tions (2.25) and (2.26)·were seen to be quite accurate de
scriptions of Q(t). The single-exponential approximation 
(2.27) based on 'Tb gave the correct asymptotic long-time 
behavior in any event, even in the slow diffusion regime. 

Results on the survival probability Q(t) are ofparticu
lar interest in that they point to conditions ('TLke small or 
f31l.G * large) for observing largely single-exponential behav
ior and to other conditions ('TLke large, f31l.G * small and 
intermediate values of .11/.10) for observing multiexponen
tial behavior. Experiments which focus on solvent dynami
cal effects in the electron transfer process are comparatively 
new and little attention has been devoted thus far to the 
experimental distinction between the two types of behavior 
ofQ(t). 

Some experiments made several years ago touch on this 
question of single- vs multiexponential behavior. Two differ
ent experimental groups studied the same system, the intra
molecular electron transfer of dimethylaminobenzonitrile in 
I-propanol. 2,3 One group reported single-exponential decay 
and the other a double-exponential decay. Using improved 
short light pulse techniques it should be possible to deter
mine which behavior is correct. 

One interesting result of the present paper is the ap
proximate power-law dependence of 'Ta , i.e., of the estimate 
for the experimentally determined inverse electron transfer 
rate, on the solvent relaxation time 'T L in the large 'T L regime. 
This behavior is in strong contrast to the results of other 
models that describe the influence of solvent polarization 
fluctuations on electron transfer reactions for solvents with a 
single polarization relaxation time 'TL Y-lS.l7 From these 
models only a simple linear dependence 'T ex: 'T L is derived for 
the inverse electron transfer rate. The existence of the frac
tional exponent a in Eq. (3.2) in a single relaxation time 
solvent is due to the inclusion in the present model of the 
contributions from intramolecular coordinates to the elec
tron transfer process. 

Kosower and Huppert l studied experimentally an intra
molecular electron transfer in a series of alcoholic solvents. 
For the solvents for which actual reaction times were deter
mined, propanol through decanol, their 'T L 's varied from 10 
to 460 ps. Their ke appears to be larger than 0.1 ps - l, the 
reciprocal of the pulse-limited rise time for the fastest system 
studied (methanol as solvent), and so 'TLke was varied from 
more than unity to more than about 50. The reaction time 
was reported to equal 'T L' within the experimental error for 
those systems. From Figs. 1 and 2 we infer that for their 
systems .1;1.10 and f31l.G * are both approximately zero. It 
would be especially desirable, however, to see if any depar-
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ture from this equality or from single-exponential behavior 
can be found (apart from that due to the existence of several 
dielectric relaxation times in the solvent) using solutes with 
some nonnegligible value of A//Ao. Deviations from T::::;TL 

would then be expected, even when [:JAG *::::; O. We have dis
cussed elsewhere some other relevant considerations, name
ly which T L' "constant charge" dielectric relaxation time, to 
useactuallyI9(a>: TL can be written as (Eo/E. )TD , whereTD is 
the customary constant electric field relaxation time and Eo 

and E. are the relevant high-frequency ("optical") and low
frequency ("static") dielectric constants of the solvent, re
spectively.44 The reader is referred to Ref. 19 (a) for a discus
sion of which dielectric constants are relevant. 

A very slow relaxation of the solvent polarization occurs 
near a glass transition of the solvent. McGuire and McLen
don9 recently investigated electron transfer processes in such 
a situation. These authors studied the electron transfer reac
tion between methyl viologen (MV2+) and electronically 
excited ruthenium complexes such as Ru(phen)~ + , with 
rigid glycerol as solvent. They reported a power-law depen
dence of the electron transfer rate on the solvent polarization 
relaxation time T L in their system, valid over several decades 
of the solvent relaxation time. The exponent was about 0.6. 
Such a result, on the surface at least, may indicate that TLke 
is in an intermediate range (e.g., the slope of the Ta ke VSTLke 
plot in Fig. 1 for A;I Ao = 0 and [:JAG * = 0 is less than unity 
when TLke is in an intermediate range), or that there is a 
strong contribution from intramolecular coordinates to the 
electron transfer process. However, the analysis of the exper
iment is somewhat indirect, since the reaction rates were 
inferred from the quenching data using a Perrin model, and 
then were recalculated to rates at a fixed separation distance 
( 15 A) using an exponential model. The T L was varied from 
about 10-8 s to more than 10- 1 s by varying the tempera
ture.45 The reaction time itself was estimated, indirectly, to 
vary by somewhat less than three orders of magnitude. The 
ke at these temperatures was estimated46 to vary only from 
106 S-1 to 105 S-1 over the same temperature range, giving a 
variation of T L ke from 10-2 to 104

• Clearly it would be useful 
to investigate other systems, preferably intramolecular elec
tron transfer systems with a fixed geometry, and so avoid 
some of the uncertainties present in this especially interest
ing first study. A direct determination of the functional form 
of Q( t) for this case, an important question, would then also 
be possible. 
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APPENDIX A: LOW-FREQUENCY MOMENTS IN THE 
NARROW REACTION WINDOW LIMIT 

As we have noted in Sec. II, in the narrow reaction win
dow limit, A//Ao .... O, the reactive term Eq. (2.6') assumes 
the form of a delta function 

(Al) 

Because of this simple form integral expressions for the low
frequency moments can be derived. In contrast to the nu
merical evaluation of the moments in Sec. II C, the analyti
cal derivation of these expressions is simpler by employing 
the adjoint Fokker-Planck operator of Sec. II B. The differ
ential equation for the adjoint auxiliary functions is then21 

(n >0) 

[k(X) -L+(x)]Jl~n(X) =Jl~(n-I)(X), (A2) 

with Jlo+ (X) = 1 and the boundary conditions (d /dX) 
XJl ~ n (X) Ix = ± "" = O. It can be solved in a straightfor
ward way, e.g., as in Ref. 47, with the result 

Jl~n (X) = k e- I + TLH(X -Xc) LX dY[Po(y)]-1 
Xc 

x L"" dZ Po(Z)Jl ~ (n _ I) (Z) 

+TLH(Xc -X) f:cdY[Po(y)]-1 

X f: "" dZ Po (Z)Jl ~ (n - I) (Z) . (A3) 

In this formula H(X) denotes the Heaviside step function: 
H(X) = 0 for X < 0 and H(X) = 1 for X> 0, and its deriva
tiveH'(X) is8(X). With Po (X) being the Boltzmann distri
bution (2.4) for a general potential, Eq. (A3) holds also for 
potentials more complicated than the harmonic one consid
ered in our paper. From the auxiliary function Eq. (A3) 
integral expressions for the first two low-frequency moments 
can be derived using the relations 

Jl-I = (tIJl ~ I (X»o = (Jl ~ I (X»o, (A4a) 

Jl-2= (tIJl~2(X»0= (Jl~I(X)IJl~I(X»o, (A4b) 

with the results 

Jl-I = k e- I + TLIJ , (A5a) 

Jl-2 = k e- 2 + 2k e-ITLII + Tilz, (A5b) 

where we have used the abbreviations for the integrals 

II (Xc) = f~coo dX [Po(X) ] -I [f~ 00 dY Po( y) ] 2 

+ 1~ dX [Po (X) ] -I [1"" dY Po( y) r, (A6a) 

I 2 (Xc) = f~coo dXPo(X) [f:
c 
dY[PO(y)]-1 

X f: 00 dZ Po(Z) r 
+ 1~ dXPo(X) [ f: dY[Po(y)]-1 

X Loo dZ Po(Z) r (A6b) 

These integrals can be evaluated analytically for functional 
forms of Po(X) such as polynomials or simple exponentials. 
In our case the Boltzmann distribution is, instead, a Gaus
sian and we have used a numerical quadrature for the evalua-
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TABLE IV. Numerical values for the functions II (Xc) and 12 (Xc ), Eq. (A8a).· 

/311G* Xc II (Xc) 12(Xc ) 12(Xc )/I1(Xc ) 

0 0.000 0.6931 0.6515 0.9400 
1 1.414 3.584 1.513(1) 4.222 
2 2.000 9.696 9.953(1 ) 9.984 
3 2.449 2.342(1 ) 5.591 (2) 2.387(1 ) 
4 2.828 5.556( 1) 3.107(3) 5.592( 1) 
5 3.162 1.331(2) 1.777(4) 1.335(2) 
6 3.464 3.245(2) 1.054(5) 3.248(2) 
7 3.742 8.036(2) 6.459(5) 8.037(2) 
8 4.000 2.017(3) 4.069(6) 2.017(3) 
9 4.243 5.117(3) 2.619(7) 5.117(3) 

10 4.472 1.309(4) 1.714(8) 1.309(4) 

• Numbers in parentheses indicate powers of 10. 

tion of Eq. (A6). However, an analytical simplification of 
the multiple integrals in Eq. (A6) is still obtainable which 
simplifies also the numerical quadrature: For Xc = 0 and ke 
..... 00 it has been shown in Part I that the analytical solution 
for the survival probability is Q(t) = (2/11') sin - I (e - t irL) . 

Since the moments are alternatively given by time integrals 
over Q(t), as in Eq. (2.24), from the quoted result the value 
of the integrals at Xc = 0 can be shown to bel8,48 

II (0) = In 2, (A7a) 

12 (0) = ~ +..!.. (1n 2)2. (A7b) 
24 2 

After some algebra, the corrections due to a nonzero value of 
Xc can be put into the form 

II (Xc) = 11(0) + 2.,fii FI (..)paG*) , 

I2(Xc ) = 12 (0) + 2.,fii(1n 2)FI (..)paG*) 

+ 21T[FI (..)paG *)]2 

(ASa) 

+ 1T[D(..)paG*) p + 21TF2(..)paG*) , 

(ASb) 

where we have used the relation between Xc andpaG *, Eq. 
(2.10'). D(x) = S~ dzez" is related to Dawson's integral, 
which is tabulated in Ref. 41, and the integrals FI (x) and 
F2 (x) are given by 

FI (x) = LX dy eY erf( y) , (A9a) 

F2(x) = LX dyeY J: dzez"[erf(z»)2, 

with 

erf(z) =- dte- t 2 iZ 

, 

#0 

(A9b) 

being the error function. The integrals FI (x) and F2 (x) can 
be evaluated by standard numerical methods3S and numeri
cal values for II (Xc) and 12 (Xc) for different values of the 
parameter paG • of our model are given in Table IV. 

In closing this Appendix we note that the narrow reac
tion window limit of the linear r L approximation for the 
average survival time ra (and, therefore, for the first low-

frequency momentJl_1 presented in Sec. III), Eqs. (3.3a) 
and (3.4) with c = 0 is identical to the expression Eq. (A5a) 
for Jl- I' This identity can be easily proven by comparing the 
derivatives of (3.3a) and of (A5a) with respect to the pa
rameter Pll.G· and taking into account the representation 
(A9a) for II (Xc), These derivatives are identical and so are 
the values of the functions at Xc = 0, which finishes the 
proof. 

Therefore, in the narrow reaction window limit the first 
order approximation (3.3a) for the first low-frequency mo
ment is already exact. However, a similar property does not 
hold for the second moment, since Eq. (A5b) shows that it 
contains a term of second order in r L' 

APPENDIX B: NONSINGULARITY OF THE MATRIX 
ELEMENT IN EQ. (3.3) 

We may begin this discussion by noting that any func
tion/(X) can be expanded in eigenfunctions ¢In+ (X) ofthe 
adjoint Fokker-Planck operator L + (X), 

00 

leX) = L / n+ ¢I/ (X) . (Bl) 
n=O 

Since the operators L(X) and L + (X) are non-Hermitian but 
are adjoint to each other, their respective eigenvalues are 
equal and their eigenfunctions, ¢In (X) and ¢In+ (X), respec
tively, can be normalized so that the "quasi-orthogonality" 
relation 

(B2) 

holds.23 Therefore, the expansion coefficients / n+ in Eq. 
(Bl) can be written in terms of the projection of / (X) on the 
eigenfunctions ofL(X), i.e., 

/ n+ = J: 00 dX ¢In (X) leX) . (B3) 

Using Eq. (Bl), the application of any integer power of the 
operator L + (X) on the function/(X) can now be represent
ed as 

00 

[L+(X»)'1(X) = L A ",./n+¢ln+ (X) , (B4) 
n=O 

where An is the eigenvalue ofL(X) and L + (X) correspond-
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ing to the nth eigenfunction. However, since L(X) and 
L + (X) have a single zero eigenvalue..to = 0, Eq. (B4) is not 
well defined in case of v < 0, in general, due to the singularity 
ofthe term corresponding to n = O. 

On the other hand, any function/(X) with a zero expan
sion coefficient /0+ , i.e., any function that lies outside the 
null space ofL + (X), will lead to an expression (B4) that is 
well defined also for v < O. Using the projection operator 
P 0+ , defined through 

Po+ leX) = rPo+ (X) f~ Q() dX' rPo(X')/(X') 

(BS) 

which projects onto the one-dimensional null space of 
L + (X), the property of to lie outside the null space can be 
stated for a function/(X) as 

(B6) 

Since the eigenfunctions of L(X) and L + (X) corre
sponding to..to = 0 are the thermal equilibrium distribution 
and the unity function,23 respectively, i.e., 

and 

rPo+ (X) = 1 , 

it can be seen easily that the function 

8k(X) = k(X) - k 0+ rPo+ (X) 

(B7a) 

(B7b) 

(B8) 

fulfills the property (B6). Since k 0+ equals ke , compare Eq. 
(B3 ), this function has the same form as in the main text, 
8k(X) = k(X) - k e • Therefore, the quantity 
[L + (X)] V8k(X) can be expressed in terms of eigenfunc
tions rPn+ (X) according to Eq. (B4) in a well-defined man
ner even for v < O. From this it follows that the matrix ele
ment ofEq. (3.3) is also well defined. 

We may note that in Refs. 20 and 49 it was demonstrat
ed how to actually calculate such matrix elements as in Eq. 
(3.3). For general one-dimensional Fokker-Planck opera
tors it was shown in Ref. 49 by employing the projection 
operator (BS) and property (B6) that matrix elements like 
in Eq. (3.3) can be expressed analytically in terms of multi
pIe integrals, i.e., in ()ur case 

< 118k(X) [L + (X)] -18k(X) 11)0 

= 7L f: 00 dX [Po(X)] -I [ f~ 00 dY poe Y)8k( y) r 
(B9) 

This provides another way to derive Eq. (3.5), alternative to 
the one used in part I. 
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